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Abstract
For the description of the interaction of a femtosecond laser pulse with a
solid, the standard values of the properties of a solid are not suited because
they have been experimentally determined or theoretically derived under the
assumptions of a steady state and local thermal equilibrium. Depending on the
property considered and the laser pulse duration, either one or both of these
conditions may be violated. This is caused by the appearance of a local thermal
nonequilibrium, a nonsteady state, and the possibly large difference between
the temperatures of the electron and phonon subsystems.

For a deeper understanding and for the prediction of experimental results,
it is essential to have knowledge of the optical properties, and especially of
the absorption and of the optical penetration depth, on the fs timescale. In this
paper, we derive equations for the optical properties of metals in the case of local
thermal nonequilibrium between the electron and phonon systems. For given
laser intensities, we calculate, as an example, the optical properties for gold.
For this purpose, we need the time-dependent temperatures of the electrons
and phonons. They are evaluated by means of our extended two-temperature
model. Finally, we compare the results with the standard equilibrium behaviour
as well as with the experimental findings and close with a short discussion.

1. Introduction

Knowledge of the absorption and the optical penetration depth during the interaction of a laser
pulse with metals is important both for modelling and applications. In the case of long laser
pulses, one can simply take the needed information from compilations where, for example, the
reflectivity and the absorption coefficient are listed as functions of frequency and temperature.
For ultrashort laser pulses, however, these values become doubtful because they are usually
determined under the conditions of local thermal equilibrium and a steady state. Since these
assumptions are violated for pulses in the fs and partly also in the ps range, we have to expect
deviations from the standard behaviour. This statement is supported both by experiments on
transient thermal reflectivity (Sun et al 1994, Bonn et al 2000) and also by investigations of
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the change in the behaviour of the thermal properties (Hüttner 1998). Indeed, the electrons
may have a temperature which is not only much higher than that of the phonons, but also even
higher than any value under which a solid or liquid state could exist.

In addition, as traditional solid-state physics is also based on the two above-mentioned
conditions, one has to use a nonequilibrium approach for the calculation of the optical
properties.

The first task, the determination of the electron distribution function f (�k, t), for local
thermal nonequilibrium was solved in Hüttner (1999). There, we derived f (�k, t) by a
perturbation treatment of the Boltzmann equation together with an additional photon operator.
In the following, we will use this function for the calculation of the frequency-dependent
electrical conductivity.

2. Electrical conductivity

For an electron gas interacting with laser radiation, the Boltzmann equation may be written as

∂ f (�k, t)

∂ t
+ �v ∂ f (�k, t)

∂�r − e�v · �E ∂ f (�k, t)

∂ E

=
∫

P(�k, �k ′, t)[ f (�k ′, t) − f (�k, t)] d�k ′ − νG( f (�k, t)) (1)

where all terms, except for the last one, have their usual meaning. The additional term
represents the phonon-assisted absorption or emission of photons. It depends essentially
on the absorbed intensity including its time dependence, the electron density, the absorption
coefficient, and the laser frequency. A detailed discussion can be found in Hüttner (1999).
Briefly, equation (1) is solved by expanding f in a power series in the small parameter p = ντ ,
defined by

p(t) = ν(t)τ = I (t)τ

nh̄ωδ
. (2)

Here, for the reader’s convenience, we give only the first- and (further below) second-order
solutions to equation (1). Assuming that the electron temperature is well established, which
implies a lower boundary for the laser pulse duration τL of about 100 fs, we find in first order

p f1 = e−t/τ
∫ t

−∞
dt ′ et ′/τ

[{
e�v · �E0e−iωt h(t)

(
∂ f0

∂ E

)
− (�v · �∇T − Ṫ )

(
∂ f0

∂T

)}

+ ν0 H (t)G( f0)

]
(3)

with f0 as the Fermi–Dirac distribution function and H (t) as the time envelope function of the
laser pulse. The abbreviation ν0 follows from equation (16) when I (t) is replaced by I0. The
function h(t) of the electric field is defined by I (t) ∼ |E(t)|2 ∼ H (t)|E |2 ∼ |h(t)E |2.

Evaluating the integral, we get

p f1 = −
{

eτ �v · �E0

1 − iωτ
e−iωt h(t) + (E − µ)�vτ ·

�∇T

T

}(
−∂ f0

∂ E

)
+ p0 H (t)G( f0) (4)

with the expansion parameter p0 = ν0τ corresponding to the number of absorbed photons
during the scattering time τ , and µ being the temperature-dependent chemical potential. The
scattering rate τ (E, Te, Tph)

−1 is composed of the sum of the rates for electron–phonon and
electron–electron scattering. Within the framework of the Fermi liquid theory, we can write it
as

τ−1 = τ−1
ph + τ−1

e−e = τ−1
ph + τ−1

T + τ−1
E = τ−1

ph + 4π2βT 2
e + β(E − µ)2 (5)

where β is an experimental parameter (Parkins et al 1981).
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2.1. First-order contribution

In first order, the electrical current density is defined by
�je1 = σ1 �E = −e

∑
�v p f1. (6)

Taking into account that odd powers of the velocity vanish, and using the condition τ � τL ,
we obtain from equations (4) and (6) for the current density

�je1 = �j �E1 + �jT 1 = e
∑

�k

�v2eτ

(1 − iωτ)
�E0e−iωt h(t)

(
−∂ f0

∂ E

)
+ e

∑
�k

(E − µ)�v2τ
�∇T

T

(
−∂ f0

∂ E

)
.

(7)

Both contributions to the current density are linearly independent if the incidence of the
laser radiation is parallel to the surface normal, because the electric field is perpendicular
to the thermal gradient in this case. Furthermore, since the time dependence of the electron
temperature is related to the laser pulse duration,we can consider jT as a constant in comparison
with the fast time dependence of jE . For this reason, the thermal part does not give a direct
contribution to σ(ω). Therefore, we neglect it in the following.

Depending on the electron temperature, three cases may be considered for the frequency-
dependent conductivity.

Case 1. Te = Tph, τph = τD � τe−e (where τD is Drude’s scattering time). Here,

σ(ω, Tph) = e2
∑

�k

�v2τD

(1 − iωτD)

(
−∂ f0

∂ E

)
h(t)

= e2τD

(1 − iωτD)
h(t)

∫
d�k

4π3
v2

(
−∂ f0

∂ E

)

= e2τD

(1 − iωτD)

3n

2µ
3/2
0

∫
dE

√
Ev2

(
−∂ f0

∂ E

)
h(t)

= e2τDn

m

h(t)

(1 − iωτD)
= σD

h(t)

(1 − iωτD)
. (8)

The function h(t) appears in equation (8) because this term can be extracted from the time
integral in equation (3). Justification for this approximation is provided by the features that

(i) the function h(t) is slowly varying in comparison with the fast exponential term and
(ii) numerical calculations of the difference between the complete and the approximated

expressions deviate by <1%.

Case 2. τD < τe−e, Te > Tph. For convenience, we rewrite equation (5) in the form

τ (E, Te, Tph) = τph(Tph)

1 + z(Te, Tph) + τph(Tph)β(E − µ(Te))2
(9)

where the function z(Te, Tph) is defined by the ratio of the electron–phonon scattering time
over part of the electron–electron scattering time, depending on the temperature:

z(Te, Tph) = τph(Tph)

τT (Te)
= 4π2βT 2

e (eV )τph(Tph). (10)

For the conductivity, we get now

σ = e2 3n

2µ3/2

∫
dE

√
Ev2 τD

1 + z + τDβ[E − µ]2 − iωτD

(
−∂ f0

∂ E

)
. (11)
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For kB Te � µ0, we can make the approximation (−∂ f0/∂ E) ∼= δ(E − µ0) and finally find

σ(ω, Te, Tph) = σD
h(t)

1 + z(Te, Tph) − iωτD
. (12)

Equation (11) improves Drude’s theory by taking into account the effect of electron–electron
scattering. The magnitude of the effect depends on the value of the parameter β and, of course,
on the electron temperature.

Case 3. τD > τe−e, Tph � Te. In this case, we use Sommerfeld’s expansion for developing
µ(Te), and get with the free-electron density of levels from equation (11)

σ1(ω, Te, Tph) = σD

1 + z − iωτD
+

e2 3nτD

m
√

µ

π2T 2
e

6

∂2

∂ E2

[ √
E

1 + z + τDβ(E − µ)2 − iωτD

]∣∣∣∣
E=µ

(13)

and finally, after evaluation of equation (13) together with the time function of the electric
field,

σ1(ω, Te, Tph, t) = σD	h(t)

{
(1 + z)

[
1 +

z

12(1 + z)
− π2k2

B T 2
e

24µ2
0

− z(1 + z)	

6

]

+ iωτD

[
1 − π2k2

B T 2
e

24µ2
0

− z(1 + z)	

6

]}
(14)

with σD being Drude’s dc conductivity and using the new abbreviation

	 = 	(ω, Te, Tph) = 1

(1 + z(Te, Tph))2 + ω2τ 2
D

. (15)

Drude’s ac conductivity follows from equation (14) in the limits kB Te � µ0, z → 0, and
h(t) = constant.

2.2. Second-order contribution

The next order is obtained by insertion of equation (4) into the following expression:

p2 f2 = e−t/τ
∫ t

−∞
dt ′ et ′/τ

{
−�v · �∇T

(
∂(pf1)

∂T

)
+ e�v · �E

(
∂(p f1)

∂ E

)
+ ν0G H (t)(pf1)

}
. (16)

Due to the energy and temperature dependence of the relaxation time τ , the solution of the
integral becomes rather long. For this reason, we will not give the complete expression here
but restrict ourselves to the terms needed for the calculation of the electrical current density.
One can considerably reduce the number of integrals by taking into account that the electric
current density is proportional to 
v f . Therefore, terms containing odd powers of v vanish
upon integration over k-space. Furthermore, in agreement with the first-order treatment, we
can neglect the terms proportional to ∇T . The remaining integral reads

p2 f2 �v = e−t/τ
∫ t

−∞
dt ′ et ′/τ

×
{

e�v2 �Ee−iωt ′ ∂

∂ E
[p(t)G( f0)] − ν0 �vG

[{
eτ �v · �Ee−iωt ′

1 − iωτ

}(
−∂ f0

∂ E

)]}
. (17)

Solving the integral, we obtain for the electrical current density in second order

�j2 = e2
∑

�k

1

4π3
�v2

[
τ 2ν0

(1 − iωτ)
+

τ 2ν0h(t)

(1 − iωτ)2

]
G

(
−∂ f0

∂ E

)
�E0h(t)e−iωt . (18)
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From this we get for the real and imaginary parts of the complex conductivity in the free-
electron approach

σ ′
2 = σDh(t)	(ω, Te, Tph)p0

{
1 − π2T 2

e

24µ2
0

+
1

6
z(1 + z)(h(t) − 1) + 	(ω, Te, Tph)[(1 + z)2

− ω2τ 2
D]

[
1 − π2T 2

e

24µ2
0

− 	(ω, Te, Tph)
z

3
(1 + z)

]}
(19)

and

σ ′′
2 = σDωτDh(t)	(ω, Te, Tph)p0

{
1

1 + z

(
1 − z

12(1 + z)
− π2T 2

e

24µ2
0

)

+ 1
6 z(z + 1)(h(t) − 1)	(ω, Te, Tph)

+ 2(1 + z)	(ω, Te, Tph)

(
1 − π2T 2

e

24µ2
0

− z

3
(1 + z)	(ω, Te, Tph)

)}
(20)

where p0 is redefined by p0 = ν0 τD = (I0τD)/(nh̄ωδ) (I0: peak intensity; n: electron density;
δ: absorption depth). The chemical potential is replaced in the expressions by µ0 because the
first correction is proportional to (kB Te/µ0)

4.
Using the familiar relation between the complex dielectric function and the complex ac

conductivity,

ε(ω, Te, Tph) = ε0 + i
4π

ω
[σ1(ω, Te, Tph) + σ2(ω, Te, Tph)], (21)

we are now able to determine the optical properties for the case of local thermal nonequilibrium
up to second order.

Aiming to show the changes for all optical properties,we first make a numerical evaluation,
because no paper reporting a closed measurement of the properties is known.

It is worth noting that such a numerical evaluation cannot directly be compared with
published transient thermal reflection measurements. This is due to the fact that the theoretical
optical properties depend explicitly on the time function of the laser pulse and therefore, for
example, the absorption is zero after the pulse. The experiment, however, probes the time
dependence of the absorption caused by a preceding pump pulse.

For this purpose, we calculate for gold the time dependences of the surface temperatures
of the electron and phonon subsystems with the extended two-temperature model (Hüttner
and Rohr 1996) improved by using the nonlinear electronic thermal conductivity derived by
Hüttner (1998). The main effect of the nonlinear electron-temperature dependence, which
is caused by the electron–electron scattering, is an enhancement of the surface temperatures
because the thermal diffusivity is reduced.

For the sake of simplicity, a top-hat profile is used for the time dependence of the laser
pulses.

In this way, the intrinsic time dependence of the properties can be assessed more easily,
because it is not masked by the shape of the laser pulse. The laser data used for ω = 1 eV
and τL = 500 fs are Iabs = 10 GW cm−2 and Iabs = 20 GW cm−2, respectively. The surface
temperatures are plotted in figures 1 and 2.

The cusps of the electron temperatures reflect the sharp cut-off of the top-hat profile. In the
next step, we use the calculated values of the temperatures as input data for the determination
of the electrical conductivity. The resulting curves for the real and imaginary parts are given
in figures 3 and 4

At t = 0, the difference in behaviour of the two parts of the conductivity is due to the
appearance of (1+z(Te, Tph)) in the denominator of the imaginary part, equation (20). Although
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Figure 1. Surface temperatures of the electrons of gold for a top-hat profile with ω = 1 eV,
τL = 500 fs, and Iabs = 10 and 20 GW cm−2.

Figure 2. Surface temperatures of the phonons of gold for a top-hat profile.

the electron–electron interaction is small at room temperature, it is already responsible for a
deviation from Drude’s theory. Furthermore, the strong dependence on intensity is worth
noting. While the real part is enhanced by more than one order of magnitude, the decrease of
the imaginary part is only about 20%.

A similar behaviour can be seen in the next four figures for the real and imaginary parts
of the dielectric function and the refractive index, respectively. As is well known, the real
and imaginary parts of the refractive index, respectively, are related to the complex dielectric
function by
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Figure 3. The real part of the electrical conductivity: full and dashed curves display the theory up
to second order; the dashed–dotted curve shows Drude’s theory.

Figure 4. The imaginary part of the electrical conductivity: full and dashed curves display the
theory up to second order; the dashed–dotted curve shows Drude’s theory.

n(ω, Te,Tph) = Re{√ε(ω, Te,Tph)}, k(ω, Te,Tph) = Im{√ε(ω, Te,Tph)}.
For convenience and later use, we also give here the expressions for the absorption depth and
for the absorption: respectively,

δ(ω, Te, Tph) = c

ωk(ω, Te, Tph)
, A(ω, Te, Tph) = 1 −

∣∣∣∣
√

ε(ω, Te, Tph) − 1√
ε(ω, Te, Tph) + 1

∣∣∣∣
2

.
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Figure 5. The real part of the dielectric function: full and dashed curves display the theory up to
second order; the dashed–dotted curve shows Drude’s theory.

Figure 6. The imaginary part of the dielectric function: full and dashed curves display the theory
up to second order; the dashed–dotted curve shows Drude’s theory

The most important quantities for applications and simulations, the optical penetration
depth and the absorption, are plotted in figures 9 and 10. Both quantities are crucial for the
stored laser energy, the resulting energy density in the solid, and, if the latter is large enough,
the character of the ablation process.

At first glance, the absorption depth is only slightly changed, about 1% at 10 GW cm−2

but already about 10% at 20 GW cm−2. In fact, this strong nonlinear behaviour may result in
a dramatic modification at higher intensities.
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Figure 7. The real part of the refractive index: full and dashed curves display the theory up to
second order; the dash–dotted curve shows Drude’s theory.

Figure 8. The imaginary part of the refractive index: full and dashed curves display the theory up
to second order; the dash–dotted curve shows Drude’s theory.

Inspecting figures 3–10, one can recognize the important consequences of the existence
of local thermal nonequilibrium for the optical properties of the metal. While in the standard
theory the increase of the phonon temperature, more exactly T = Te = Tph , only leads to slight
modifications (dash–dotted curves), the properties under fs laser pulses are overwhelmingly
dominated by the appearance of a local thermal nonequilibrium between the electrons and
phonons (full and dashed curves). At first sight, the similarity of the shapes of the curves
suggests that this is mainly caused by how the electron temperature evolves. A closer
investigation, however, shows that this is more or less the case for the properties dominated
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Figure 9. The optical penetration depth in nm: full and dashed curves display the theory up to
second order; the dash–dotted curve shows Drude’s theory.

Table 1. Relative change, �x/x = [x(τ ) − x(0)]/x(0), of the electron and phonon temperatures
(Te , Tph), the real and imaginary parts of the conductivity (σ ′, σ ′′), the dielectric functions
(ε′, ε′′) and the refractive indices (n, k), the absorption depth (δ) and the absorption (A) for
I = 10 GW cm−2 (second line) and I = 20 GW cm−2 (third line).

�Te

Te

�Tph

Tph

�σ ′

σ ′
�ε′′

ε′′
�n

n

�A

A

�σ ′′

σ ′′
�ε′

ε′
�k

k

�δ

δ

15.94 0.100 5.67 5.67 5.79 5.88 −0.042 0.042 −0.018 0.018
29.23 0.127 14.73 14.73 16.20 17.59 −0.208 0.210 −0.086 0.094

by the real part of the conductivity. Those properties, which are more directly governed by
the imaginary part of the conductivity, show a delicate balance of the contributions from the
changes in the electron and phonon temperatures mainly caused by the product ωτD(Tph). The
absorption coefficient provides a prime example. Although the change of the imaginary part
of the dielectric function is much larger than the change of the real part, as given in table 1, it is
not able to compensate for the ‘loss’ of the real part with increasing phonon temperature. For
this reason, the absorption coefficient decreases. This is in complete analogy to the behaviour
in the standard theory if the frequency is increased.

Surely the most serious change, an increase by almost a factor of 20, appears in the
absorption. Such an enhancement and the corresponding decrease of the reflection have been
observed in many experiments (Banyai et al 1990, Bonn et al 2000, Fedosejevs et al 1990,
Sun et al 1994).

Another important fact is given by the different nonlinear responses of the various optical
properties to the changes of the temperatures. A slight increase of the relative change of the
phonon temperature by 27% leads to a variation of the relative change of the absorption depth
by more than a factor of 5.

Since gold has one of the smallest coefficients of energy exchange, one can expect that this
effect may still be larger for other metals provided that the phonon temperature stays below
the evaporation point.
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Figure 10. The absorption: full and dashed curves display the theory up to second order; the
dash–dotted curve shows Drude’s theory.

Next, we give a direct comparison of the theory with experiments. From figures 5 and 6 or
from table 1, it follows that the relative change of the imaginary part of the dielectric function
is much larger than that of the real part. This outcome agrees well with the experimental
findings reported by Elsayed-Ali et al (1991). The authors found for gold films that in
response to a fs laser pulse the imaginary part of the dielectric function undergoes a significantly
higher perturbation than the real part. Moreover, using the experimental data for the fluence,
F = 4 mJ cm−2, the pulse duration, τL = 150 fs, and the photon frequency, ω = 2 eV,
which is well below the interband transition energy, we find for the maximal deviations
�ε1/ε1 = −7.4 × 10−3 and �ε2/ε2 = 0.56, which exactly correspond to the difference
of two orders seen in the experiment.

Hohlfeld et al (1996) carried out a measurement of the relative change of the transient
thermal reflectivity of gold for a p-polarized wave with I = 10 GW cm−2, τL = 100 fs,
and ω = 2 eV at incident angles of 43◦ (pump) and 48◦ (probe). The results, together with
our theoretical calculations, are plotted in figure 11. From the inset we recognize that the
alteration of the absorption at early times is primarily governed by the electron temperature;
at later times, however, the contribution from the electron–phonon scattering becomes more
pronounced due to the rise of the phonon temperature and the fall of the electron one.

3. Conclusion

The nonequilibrium distribution of the electrons and the existence of different temperatures
for the electron and phonon subsystems are surely the most essential features appearing in the
interaction of fs laser pulses with matter. Although both effects appear also in the case of low
intensities (Fann et al 1992), their consequences become, of course, more pronounced at high
intensities. The replacement of the Fermi–Dirac function by the nonequilibrium distribution
function expands the available phase space for the electrons and brings additional terms into
the equations. On the other hand, the decoupling of the temperatures enhances the effect of
electron–electron scattering. At high electron temperatures, the electron–electron scattering
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Figure 11. Relative changes of the transient thermal reflectivity of gold for p-polarized light with
ω = 2 eV at incident angles of 43◦ (pump) and 48◦ (probe). Inset: the normalized absorption and
normalized electron temperature.

rate becomes comparable to or even greater than the electron–phonon scattering rate and starts
dominating the interactions. Together with the larger phase space, this outcome is responsible
for the qualitative and quantitative changes of the optical properties discussed in this paper
and for the thermal conductivity investigated by Hüttner (1998). It is worth noting that the
new properties are mainly common to all metals and not restricted to the noble metals often
considered in pump-and-probe experiments.

A complete self-consistent modelling of the electron and phonon temperatures including
the full temperature dependence of all material properties involved represents a formidable
mathematical challenge and is still a completely open issue.
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